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ON PROPERTY I FOR KNOTS IN S3 

XINGRU ZHANG 

ABSTRACT. This paper deals with the question of which knot surgeries on S3 
can yield 3-manifolds homeomorphic to, or with the same fundamental group 
as, the Poincart homology 3-sphere. 

1. INTRODUCTION 

Problem 3.6(D) in [19] asks whether there is a 3-sphere which can be obtained 
by surgery on an infinite number of distinct knots in S3 . Examples of homology 
3-spheres which can be obtained by surgery on two or finitely many distinct 
knots in S3 have been found. However, the Poincare homology 3-sphere, Kirby 
made a remark after Problem 3.6(D), seems only obtainable from 1-surgery on 
the right-hand trefoil knot (or, reversing orientation, from -1-surgery on the 
left-hand trefoil knot). This paper is devoted to provide evidence to support 
this observation. 

The Poincare homology 3-sphere, first constructed by Poincare, is a very spe- 
cial manifold. It seems to be the first known example of a nonsimply connected 
closed 3-manifold with trivial first homology group. It has several interesting 
descriptions (see [27, 201). Here we only mention three of them which are 
relevant to this paper: 

(i) the manifold obtained by 1-surgery on the right-hand trefoil knot; 
(ii) the quotient space of S3 under a free action of the binary icosahedral 

group = {X,y ;x2= ( ~ y ) ~y5, x4= 1) ;= 
(iii) the 2-fold (3-fold, 5-fold) cyclic branched cover of S3 branched over 

the (3, 5) ((2, 5) , (2, 3)) torus knot. 
By (ii) the fundamental group of the Poincare homology 3-sphere is the binary 

icosahedral group I l 2 ~ .This group has order 120 and trivial abelianization. So 
far it is not known if the Poincare homology 3-sphere is the only homology 
3-sphere with nontrivial finite fundamental group. 

Definition. A knot K in S3 has property I if every surgery along K does not 
yield a manifold M with nl(M) = I l 2 ~ .  in S3 has propertyA knot K I^ if 
every surgery along K does not yield the Poincare homology 3-sphere. 

Of course the trefoil knot does not satisfy property ? 
Received by the editors June 25, 1991. 
199 1 Mathematics Subject Classification. Primary 57M25, 57M99. 

Key words and phrases. Knots, Dehn surgery, property I. 


0 1 9 9 3  American Mathematical Society 
0002-9947193 $1.00 +$.25 per page 



644 XINGRU ZHANG 

Conjecture I @) . Every nontrefoil knot in s3has property 1 @) . 
Recall that property P (F)conjecture states that every nontrivial surgery 

along a nontrivial knot in s3does not yield a homotopy 3-sphere (the 3-sphere). 
The property conjecture has been proved recently by Gordon and Luecke 
[12]. It is known that if the fundamental group of a homology 3-sphere is finite 
then it is either the trivial group or else the group 1120[18]. Therefore property 
I and property P together are equivalent to property PI defined as follows. 

Definition. A knot K in S 3  has property PI if every homology 3-sphere ob- 
tained by a nontrivial surgery along K has infinite fundamental group. 

Conjecture PI. Every nontrivial nontrefoil knot in s3has property PI. 

Much research has been carried out to prove property P. No literature, how- 
ever, has been found dealing specifically with the generalized problem we just 
raised above. As we will see, property P and property I 6) have certain con- 
nections and common features; some techniques which work for property P 
can also be generalized to work for property I 6 )  . However in general the two 
properties do not imply each other. Certain knots (e.g., slice knots) are found 
to have property ? but are not known whether or not to have property P. In 
many cases property I seems a harder problem. 

The rest of the paper is organized as follows. Section 2 contains a complete 
classification of cyclic group actions on the Poincare homology 3-sphere with 
l-dimensional fixed point sets. The main purpose of $2 is to obtain Corollary 
2.3 which plays a role for property 1 problem similarly as the Smith conjecture 
does for property P problem. In $3 several popular classes of knots in S 3  are 
proved to have property I or ?. Various techniques and results in 3-manifold 
theory and knot theory are applied. The paper concludes in $4 with further 
remarks and open questions. 

We vork throughout in the PL category and we refer to [15 and 271 for basic 
terminology. 

This paper is taken from part of the author's Ph.D. thesis [32] and as such 
the author is indebted a lot to his supervisor Erhard Luft. The author thanks 
the referee for his (her) comments, in particular for pointing out a gap in the 
earlier version of this paper. 

2. CYCLICACTIONS ON THE POINCAREHOMOLOGY 3-SPHERE 

In this section we give a complete description of orientation preserving iso- 
metric cyclic actions on the Poincare homology 3-sphere, denoted by D3 (Theo-
rem 2.2). Combining Theorem 2.2 with a result of Thurston, we obtain a classi- 
fication of cyclic actions on D~ with fixed point sets of dimension 1 (Corollary 
2.3) which will be applied in $3. 

The following lemma will be used in the proof of Theorem 2.2. Its proof is 
elementary and is thus omitted here. 

Lemma 2.1. Let X be a path connected, locally path connected and semilocally 
simply connected space, and let p:  2 -,X be a universal covering projection. 
Let G be a group of homeomorphisms of X and let r be the group of covering 
transformations. Define G = { g  ; g :  2 -,2 a map with pg = gp for some 
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g E G )  . Then 

1. 	Z! is a group of homeomorphisms of g .  
2. If N c G is a normal subgroup, then fic Z! is a normal subgroup. In 

particular, r = fi c Z! is a normal subgroup. 
3. For- each 2 E Z! the element g E G with pg = gp is unique, the 

map p,: G + G dejned by p,(g) = g is an epimorphism, and the sequence 
1 + -+ Z!P" G + 1 is exact. 

In Theorem 2.2 below, we present D3 as 3-dimensional space form; i.e., con- 
sider the orthogonal action of SO(4)  on S 3  and let D3 = S 3 / I 1 2 ~where 1120 

is a subgroup of SO(4). If (1120)1 c SO(4)  are subgroups isomorphic , (1120)2 
to 1 1 2 0 ,  it follows from [28, Theorems 4.10 and 4.1 11 that they are conju- 
gate in O(4). Consequently s ~ / ( I ~ ~ ~ ) ~are isometric. and S3/(1120)2 Thus 
D3 = S 3 / ~ 1 2 0is independent of the choice of the subgroup Ilzoc S O ( 4 ) .  

Theorem 2.2. (i) For each integer n > 1 there is an orientation preserving iso- 
metric Z, action on D3 . 

(ii) Up to conjugation by an isometry, such a Z, action is unique for each n . 
(iii) If n is relative prime to 2, 3, and 5, then the Z ,  action is free; if n 

is not prime to 2, 3, or 5, then exactly those elements of Z ,  which have orders 
2, 3, or 5 have fuced point sets and the fuced point set of each such element is a 
1-sphere. 
Proof. 	The basic reference for the facts stated in the proof is [28]. 

Consider the following exact sequence [28, p. 4531: 

Let be a subgroup of SO(3)  isomorphic to the icosahedral group. Let 
= q-1(160x 1). Then c SO(4)  is isomorphic to the binary icosahedral 

group and acts on S 3  fixed point freely by isometries. We shall take p:  S 3  + 

D3 = S3/1120as a standard universal covering of the Poincare homology 3- 
sphere. 

(i) We first prove the existence. Let { f " )  c SO(3)  be a cyclic group of order 
n . Let f E q-l ( l  x f " )  and let F be the subgroup of SO(4)  generated by 
Ilzo and f .  Note that f ~ ~ = ~1 1 2 0 ,~ f - ~F is a group of isometries having 
Ilzo as a normal subgroup of index n and f is a generator of the quotient 
group F / I ~ ~ ~ .Let I lzo act on S 3  first and thus get the quotient space D 3 .  
There is an induced orientation preserving isometric cyclic action on D3 of 
order n as follows: let p:  s3+ D3 be the covering projection corresponding 
to the Ilzo action and define f :  D3 + D3 by f ( x )  = Pf(i) xwhere E D3 
and 2 E p-I ( x )  . Then f is well defined; in fact, let i'E p-I ( x )  ,then there is 
a E such that a ( i )= ifand thus ~f(i ' )~ f ( a ( i ) )~ p f ( i )= p f ( i )= = 
where p = fa?-' E II20.  Similarly, using f - I  , define f ': D3 -+ D3 by 
f ' ( ~ ) = ~ f - ' ( i ) .  = 1 and f f l =  1,andthus fItiseasytocheckthat f ' f  

is an isometry of D 3 .  As f p  = f , the order of f is n . 


(ii) We now prove the uniqueness (up to conjugation by an isometry). Let 
g :  D3 -+ D~ be an orientation preserving isometry of order n . We may as- 
sume that the geometric structure on D~ is induced from the universal covering 
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p:  S 3  + D3 given at the beginning of the proof. We shall prove that, up to a 
conjugation by an isometry of D 3 ,  the { g )  action is equivalent to the { f )  
action given in (i). 

Let G = { g ; g :  S 3 + S 3  a map with pg = gkp for some integer k) . Then 
G c SO(4) by our construction. By Lemma 2.1, Ilzo c G is a normal subgroup -
of index n . More explicitly, G = U~I; gk l lZofor some g E G with pg = gp . 

Claim 1 .  There is an element h E SO(4)  such that hGh-' = F . 
Proof of Claim 1 .  Still consider the exact sequence 

1 + Z2 -+ SO(4)  SO(3)x SO(3)+ 1 .  

Let pi ,  i = 1 , 2 ,  be the natural projections from SO(3) x SO(3)  to its left 
and right SO(3)  factors respectively. Then we must have ply(G) = since 
SO(3)  has no finite group containing as a proper subgroup. Let y(g)  = 
g' x g" E SO(3)x SO(3). Then g" # 1 since otherwise the kernel of y would 
be larger than Z 2 .  AS g' E 1 6 0 ,  (2l-l x l ) ( g lx g") = 1 x g" E y ( G )  . Suppose 
g" has order m in S O ( 3 ) . Then we see y ( G )  = 160 x {g" )  and thus m = n 
by Lemma 2.1. 

Since isomorphic subgroups of SO(3)  are conjugate, there are h" E SO(3)  
such that hl'{g")h"-I = { f 'I) . SO y(G) is conjugate to x { f ") in SO(3)x 
SO(3) by the element 1 x h" . Let h E y - ' ( 1  x h") . Then since the kernel 
of y is Z2 which is contained in both G a n d F ,  hGh-' = p . Note that 
h11~~h- l= 1'20 . 

Claim 2. There is an isometry h :  D3 -+ D3 such that h{g)h-' = { f ) . 
Proof of Claim 2. Define h :  D3 -+ D3 by h ( x ) = ph(2)  where 2 E p- ' (x )  . 
Then h is well defined. In fact, let i'E p- ' (x )  , then there is a E such 
that a ( i ) = 2' and thus p h ( i l ) = ph(a(2) )= p ~ h ( 8 )= p h ( i )  where j? = 
hah-' E I I Z O .Similarly, using k-' , define h': D3 -+ D3 by h l ( x )= ph-'(2) 
where i E p-'(x) . It is easy to check h'h = 1 and hh' = 1 , and thus h is an 
isometry and h-' = h' . 

Now let x E D 3 ,  

hgh- ' ( x )  = hgph- ' (2)  = hpgh-' (i)= phgh-' (8)  

= p X ( i ) = f  k p ( a )  = f k ( ~ )  

where f* = hgh-' E has order n . Hence f has order n and thus 
h{g)h-' = { f )  

(iii) Note that SO(3) x SO(3)  is the orientation preserving isometry group 
of SO(3)  and the diagram 

SO(4)x S 3  SO(3)x SO(3)x SO(3)  

commutes, where the two vertical arrows denote the actions on S 3  and SO(3)  
respectively and q is the quotient map defined by the standard Z2 action on 
S 3 .  
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Note that an element g' x 2" E SO(3)x SO(3) acts on SO(3) fixed point 
freely iff g' is not conjugate to g" in SO(3). Also note that two elements in 
SO(3) with finite orders can possibly be conjugateonly when they have the same 
order. Hence if n is relative prime to 2, 3, 5, then any element in x {g") 
acts on SO(3) freely since orders of elements in can only be 2, 3, and 5. 
Hence we have a free induced 2, action on D 3 .  

If n is not relative prime to 2, 3, or 5, then exactly those elements E' x E" E 
x {g") with 2' and E" having the orders 2,3, or 5 and being conjugate to 

each other have fixed point sets in SO(3). Such elements exist. Hence in these 
cases, we obtain x Zk , k = 2 ,  3 ,  or 5, actions on SO(3) with fixed point 
sets. This in turn induces orientation preserving Zk actions on D~ with fixed 
point sets. By Smith theory [6] the fixed point set of each such cyclic action is 
a l-sphere in D3 . 

Corollary 2.3. Let M be a closed irreducible 3-manifold with nl ( M )= IlZ0and 
let f : M 3  + M 3  be a homeomorphism of order n . Pf the jixed point set of f 
has dimension 1, then M is homeomorphic to the Poincark homology sphere D3 . 
Furthermore the action is unique up to a conjugation by a homeomorphism of 
D3 and the order n must be 2 or 3 or 5. Thus the associated branched covering 
is equivalent to one of the known cases given in 5 1(iii). 

The proof of Corollary 2.3 is based on the following result of Thurston. 

Theorem 2.4 (W. Thurston). Let M be an irreducible closed 3-manifold which 
admits a finite cyclic group action with jixed point set of dimension 1. Then M 
has a geometric decomposition. Furthermore if M is also atoroidal, then M 
admits a geometric structure such that the group action is by isometries. 
Proof of Corollary 2.3. Since nl ( M )= Ilzo, M is atoroidal by Dehn's lemma. 
By Theorem 2.4, M is homeomorphic to D3 and f is an isometry. Note that 
f is necessarily orientation preserving since it has l-dimensional fixed point 
set. Now apply Theorem 2.2. 

3. KNOTSHAVING PROPERTY 1 OR 7 
First we apply Casson's theorem (see [I]) to give a simple but effective crite-

rion for knots in S 3  to have property 7 (Lemma 3.2). 

Theorem 3.1 (A. Casson). Let A denote the Casson invariant of an oriented 
homology 3-sphere M ; then 

( 1) A(- M )  = -A(M) , where -M denotes opposite orientation of M . 
(2 )  A(M)= 0 i f  nl ( M )= 1. 
(3)  A(M)= p ( M )  mod 2 ,  where p (M)  is the Rohlin invariant of M . 
(4 )  Let K be a knot in S 3  and let S 3 ( ~ ,111) be the homology 3-sphere 

obtainedfrom 111-surgery on K . Let AK( t )  be the normalized Alexander poly-
nomial of K , i.e., A K ( l )= 1 and AK(t-l ) = AK(t). Then 

A(s3(~,111)) = 1(1/2)A;(1) 

where Ag(1) is the second derivative of AK( t )  valued at 1. 
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For a knot K in S3 ,1(K) = (1/2)Ag(1) is called the Casson invariant of 
K .  Note that 1(K) is always an integer. 

Let T denote the right-hand trefoil knot in S3 and let D~ denote the 
Poincare homology 3-sphere. Since D3 can be obtained by 1-surgery along 
T and AT(t)= -1 + t + t-l ,we have A ( D ~ )  = (1/2)AF(1) = 1. Now suppose 
that S3(K,  111),a manifold obtained by 111-surgeryalong a knot K in S3,is 
homeomorphic to D3 . Then by Theorem 3.1, 1(S3(K,1/I)) = 1(1/2)Ag(l)= 1 
or -1 . Therefore 1= 1 or -1 and (1/2)Ag(1)= 1 or -1 . This gives 

Lemma 3.2. Let K be a knot in S 3 .  If S 3 ( ~ ,111) is the Poincark homol-
ogy 3-sphere, then 1(S3(K,111)) = 1 or -1, I = 1 or -1, and 1'(K) = 
(1/2)Aj!(l) = 1 or -1. 

Lemma 3.3. If the Arfinvariant, a (K) ,  of a knot K in S3 is trivial, then K 
has property ?. 
Proof. In [lo] Gonzalez-Acufiaestablished a surgery formula for calculatingthe 
Rohlin invariant of a homology 3-sphere S3(K,111),in terms of surgery slope 
and the Arf invariant, that is, 

p ( s 3 ( ~ ,111))- la(K) (mod 2). 

By Theorem 3.1, 1 ( S 3 ( ~ ,111))- p(S3(K, 111))- la(K) - 0 (mod2). Hence 
s ~ ( K ,111) cannot be the Poincare homology 3-sphere by Lemma 3.2. 

Similarlyone can show that a knot K in S3with Arf invariant 1has property 
P. Also note 1(K)- a(K) (mod 2) . 
Proposition 3.4. Slice knots (and hence ribbon knots) have property ?. 
Proof. It is known that the Arf invariant is an invariant of concordance [26]. 
Since any slice knot is concordant with the trivial knot and the Arf invariant of 
the trivial knot is 0, the proposition follows from Lemma 3.3. 

Proposition 3.5. If two knots K1 and K2 in S3 have the same Arf invariant, 
then any band-connect sum, K1#b K2, of K1 and K2 has property ?. 
Proof. In [16], Kauffman defined a I?-equivalencerelation for knots in S3and 
showed that two knots in S3 are r-equivalent if and only if they have the 
same Arf invariant. Performing I?-moves, one can easily show that K1#b K2 is 
I?-equivalent to K1# K2, the composite knot of K1 and K2.  Hence they have 
the same Arf invariants. Since the Arf invariant is additive with respect to the 
knot connect sum, the proposition follows by Lemma 3.3. 

Similarlyone can prove that if two knots K1 and K2 in S3have different Arf 
invariants, then K1#b K2 has property P. Note that property for nontrivial 
band-connected sums was proved by Thompson [311 using a different method. 

Proposition 3.6. Nontrefoil torus knots have property I. 
Proof. This proposition is implicitly contained in [23]. Here we give a proof 
using the Casson invariant. Let T(p,q) be a torus knot. Note that (p ,q) = 1 . 
We may also assume that 0 < p < q . If p = 1,then T(1, q) is the trivial knot 
which obviously has property I. So we may assume that 1 < p < q . Note also 
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that T ( 2 ,  3) is the trefoil knot and hence to be nontrefoil, p # 2 or q # 3 .  It 
is known that the normalized Alexander polynomial of T ( p ,q )  is 

Pure calculation of the second derivative of AT@,q )  ( t )  gives ( 1/2)Alf.(p,q )( 1 )  = 

(p2- l ) ( q 2- 1)/24.  Since 1 < p < q and p # 2 or q # 3 ,  (1/2)A$@,,)(l)> 
(32- 1)(22- 1)/24 = 1 . By Lemma 3.2, T ( p ,q )  has property ?. Note 
that every manifold S 3 ( ~ ( p ,q ) ,  111) is Seifert fibered, so it cannot be a fake 
Poincare homology 3-sphere. Hence T ( p,q )  has property I. 

Similarly one can show that nontrivial torus knots have property P (the result 
was first proved by Hempel [14]).Therefore nontrivial nontrefoil torus knots 
have property PI. 

Proposition 3.7. Satellite knots have property I. 

Property P for satellite knots has been proved by Gabai [8].  His proof is 
based on the following result of his. 

Theorem 3.8 [8].Let K be a knot in a solid torus N with nonzero wrapping 
number. Let N ( K ,  m l l )  be the manifold obtained by performing mll-surgery 
along K in N .  Then one of the following must hold: 

( 1 )  N ( K ,  m l l )  is a solid torus and K is a 0- or 1-bridge braid in N .  
(2 )  N ( K  ,m l l )  = Y # W , where W is a closed 3-manifold and HI(W )  is 

jinite and nontrivial. 
( 3 )  N ( K  ,m / l )  is irreducible and d N ( K ,  m l l )  is incompressible. 

To prove Proposition 3.7 we need another result of Gabai and a result of 
Gordon. 

Theorem 3.9 [9].Let K be a knot in a solid torus N .  If K is a 1-bridge braid, 
then only the surgery with slope f( t  + j o ) o  fb or f( t  + j o ) o  fb f 1 on K 
can possibly yield a solid torus, where o is the winding number of K in the 
solid torus, t + j o  is the twist number of K with 0 < t < o - 1 ( j  being an 
integer), b is the bridge width of K with 0 < b < o - 1 . 

See [9]for the definitions of twist number and bridge width of a 1-bridge 
braid in a solid torus. 

Lemma 3.10 [ l11. Let K = C ( p ,  q )  be a cabled knot in a solid torus N .  Then 
N ( K ,  mil) is a solid torus i f  m = lpq f 1 . 
Proof ofProposition 3.7. Let K be a satellite knot in S 3  with K, as a nontrivial 
companion knot. Let V and N be tubular neighborhoods of K and K, in S 3  
with V c i n t N .  Let E = S ~ - i n t V ,  E, = S 3 - i n t N ,  and Eo = N - i n t V .  
Then E = E, UEo . Let p , A c d E  and p* ,A* c dE, be preferred meridian-
longitude pairs of K and K, respectively. Let o be the winding number of 
K i n  N .  

Suppose that S 3 ( K ,  111) is a manifold with fundamental group Il2o. Then 
dN must be compressible in S 3 ( K ,111) by Dehn's lemma. Let ( D 2 ,dD2)c 
( S 3 ( K ,1 / 1 ) ,  dN )  be a compressing 2-disc. Since d N is incompressible in E, , 
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(D2,dD2)c (N(K, I / / ) ,  d N) . Hence consider the manifold N(K , 111),case 
(3) of Theorem 3.8 cannot happen. Case (2) of Theorem 3.8 cannot occur 
either by our assumption. Therefore N(K, 111) is a solid torus and K is a O-
or 1-bridge braid in N .  But by Theorem 3.9, K cannot be a 1-bridge braid 
and by Lemma 3.10, K cannot be a 0-bridge braid. A contradiction is thus 
obtained. 

Hence satellite knots have property PI. By Propositions 3.6 and 3.7, one only 
needs to show property I for hyperbolic knots. 

Recall that a generalized doubled knot is defined as follows. Let V be an 
unknotted solid torus and let Kp, O  be the knot contained in V as shown in 
Figure 3.1(a). Let K, be any knot in S3and let N be a tubular neighborhood 
of K, in S3. Let f be a homeomorphism from V to N .  Then the image 
K = f (K, ,0) of K, ,0 under f is called a generalized doubled knot and K, is 
called a companion knot of K = f (K, , o )  . Note when p = 1 this is just the 
usual definition of a doubled knot. 

Proposition 3.11. Nontrefoil generalized doubled knots have property I^ .  
Proof. Let K be a generalized doubled knot in S3and let K, be its companion 
knot. If K, is a nontrivial knot, then K is a satellite knot and Proposition 3.7 
applies. If K* is the trivial knot, then K is a generalized twisted knot (Figure 
3.1(b)). So we assume that K = K, ,,,a generalized twisted knot with q twists. 
Note that Kp,0 is the trivial knot, K1,-1 is the right-hand trefoil knot, K-', 1 

is the left-hand trefoil knot, K-l, -1 and K1,1 are the figure eight knot, and 
KO, is the trivial knot. 

Using the Conway recursion formula [7], one can easily obtain that the nor-
malized Alexander polynomial of K,, ,is AKp,,(t) = 2pq + 1-pq(t + t-') . So 
(1/2)AkP,J1) = pq . Hence by Lemma 3.2 only when p = f1 and q = f1 

could K, ,,have chance to ruin property ?. But then K, ,, is either a tre-
foil knot or a figure eight knot. It is well known that 1 and -1 surgeries on 
the figure eight knot produce the same manifold (the figure eight knot is am-
phicheiral) whose fundamental group is the triangle group with presentation 
{x, y ;x2 = y3 = ( ~ y ) ~ )and thus is of infinite order. Therefore the figure 
eight knot has property I .  This completes the proof. 
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Similarly one can show that nontrivial generalized double knots have property 
P. 

Recall that a knot K in S3is called a periodic knot if there is an orientation 
preserving automorphism f of S3 with the following properties: (i) f has 
period n > 1, that is, f n  is the identity map and f i  is not the identity map 
for 1 5 i < n ; (ii) K is invariant under f , that is, f (K) = K ; (iii) the fixed 
points set of f is not empty and is disjoint from K .  Note that the action on 
S3 by the cyclic transformation group {f ) generated by f induces a n-fold 
cyclic branched covering p :  S3-+ S3/{f )  . Due to the positive answer to the 
Smith conjecture [2], the map f is a rotation of S3, S3/{f ) is homeomorphic 
to S3 ,the fixed point set of f is a trivial knot in S3;and the image of the fixed 
point set under p is also a trivial knot in S3. The restriction of p on K gives 
a regular covering p :  K -+ p(K) and thus p(K) is also a knot in p(S3)= S3. 
p(K) is called a factor knot of K . The following lemma may be found in the 
literature so its proof is omitted here. 

Lemma 3.12. Let K be a periodic knot in S3 with period n .  If (m,  nl) = 
1, then S3(K ,m/l) admits a Zn action with jixed point set a 1-sphere. The 
quotient space of S3(K, m/l) under the action is S3(p(K),mlnl) . 

Proposition3.13. Surgery on a periodicknot K in S3cannot give afake Poincark 
homology 3-sphere. A periodic knot in S3 with period n # 2,  3 ,  5 has property 
I. 
Proof. By Lemma 3.12, S3(K, 111) admits a Z, action with fixed point set 
a 1-sphere. By [12], any homology 3-sphere obtained by surgery on a knot in 
S3 is irreducible. If for some slope 111, S3(K,  111) has fundamental group 
1120,then Corollary 2.3 implies that S3(K, 111) is the honest Poincare homol-
ogy 3-sphere. Also if n # 2 ,  3 ,  5 ,  then S3(K, 111) cannot be the Poincare 
sphere. 

Proposition 3.14. A periodic knot K with a nontrivialfactor knot has property 
I. 
Proof. By Proposition 3.13 and Lemma 3.2, we only need to show S3(K,f1) 
is not homeomorphic to the Poincare homology 3-sphere. By Lemma 3.12, 
S3(K,f1) is the n-fold cyclic branched cover of S 3 ( p ( ~ ),f1In) with branch 
set a 1-sphere. Since S3(p(K),fl /n)  cannot be the 3-sphere S3 by [12], 
S3(K,f1) cannot be the Poincare homology 3-sphere by Corollary 2.3. 

Example 3.15. The knot 8i8  is a periodic knot of period 2 with the figure eight 
knot 41 as a factor knot, and thus has property I. 

Example 3.16. 

Recall that a knot K in S3 is strongly invertible if there is an orientation 
preserving involution of S3which carries K onto itself and reverses its orien-
tation. Note that the axis of the involution meets K in exactly two points. 

The facts in this paragraph are found in [22, 31. Let K be a strongly invertible 
knot in S3. Then the restriction of the involution to the knot complement 

This example was deleted by the author after the paper was in proof. Please disregard any 
reference to it in text. 
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can be extended to an involution of the manifold S 3 ( ~ ,mll)  obtained by 
performing mll-surgery on K . The quotient space of S 3 ( ~ ,  ml l )  under this 
involution is the 3-sphere S 3 ,  i.e., S 3 ( K ,  ml l )  is a double branched cover of 
S 3 .  Moreover the branched set downstairs of this covering can be obtained by 
removing a trivial tangle from the unknot (the branched set corresponding to 
the trivial surgery) and replacing it by the mll-rational tangle. In particular 
if the surgery slope is an integer m , then the removal and replacement of the 
trivial tangle corresponding to the surgery is in fact the attachment of a band 
with m half-twists to the unknot. 

By the above discussion, S 3 ( ~ ,  111) admits a Z2 action with fixed point set 
a 1-sphere. Hence by the same reason as given in the proof of Proposition 3.13, 
we have 

Proposition 3.17. Surgery on a strongly invertible knot K cannot yield a .fake 
Poincare homology 3-sphere. 

Proposition 3.18. At most one surgery on a strongly invertible knot K can give 
a manifold with fundamental group 
Proof. By Proposition 3.17 and Lemma 3.2, we only need to show that S 3 ( K ,  1) 
and S 3 ( ~ ,  cannot both be homeomorphic to the Poincare homology 3- -1) 
sphere. Suppose, on the contrary, that they both are homeomorphic to the 
Poincare homology 3-sphere. By Corollary 2.3, there is, up to a conjugation 
by a homeomorphism, a unique involution on the Poincare homology 3-sphere 
with fixed point set a 1-sphere. Hence the associated double branched covering 
is the one mentioned in §l(iii). The branched set in the base space S3 is the 
( 3 ,  5) torus knot up to unoriented automorphisms of S3and thus is either the 
right-hand or the left-hand (3 ,  5) torus knot. 

The branched sets corresponding to S3(K , 1) and S3(K , -1) , denoted by 
KI and K-I , can be obtained by band attachments with 1 and -1 half twist 
to the unknot respectively. Let U denote the unknot and let Lo denote the 
link (of two components) obtained by band attachment with no twist to the 
unknot. Then K 1 ,  K- , ,  U and Lo have diagrams differing only at the site 
shown below. 

U K1 K-1 =0 

We can orient K1 ,K-I and Lo in a consistent way such that we can apply 
the Conway recursion formula and get VK, -VK-,-Z V L ~= 0 ,  where V is the 
Conway polynomial. Since each of K1 and is the right-hand or left-hand 
(3 ,  5) torus knot, it is easy to show that lk(Lo) = 0 (where lk denotes the 
linking number), using the following properties of the Conway polynomial: (1) 
if K is a knot in S 3 ,  then VK is independent of the choice of orientation 
for K ; (2) let L be a link in S3 and let L' denote the mirror image of L ,  
then VL* (z)  = VL(-Z) ; (3) let VL(z) = a0 + a l  z + . . . + anzn  be the Conway 
polynomial of a link L , then 

if L has two components, a ,  = { gCL) 
otherwise. 
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Now we try to get a contradiction by calculating the Kauffman brackets of 
K 1 ,K-1, U ,  and L o .  Recall that the Kauffman bracket ( L ) ( A )E Z [ A ,A-'1 
is defined for unoriented link diagrams L with the following defining relations: 

where S ,  %, x , )(  stand for link diagrams which look like that in a neighbor-
hood of a point and identical elsewhere. 

where 0 denotes the unknot diagram with no crossing points and U denotes 
the disjoint union. 

( L ) ( A )is not a link invariant but it can be adjusted to be one for oriented 
links. Given an oriented link diagram L .  Let w ( L )  be the algebraic sum of 
the crossings of L , counting X and X as +1 and -1 respectively. Then 

is a desired invariant of oriented links under ambient isotopy. We shall call 
fL(A) the oriented Kauffman bracket of L . Note that ( 1 )  if L is a knot then 
fL(A) is independent of the choice of orientation; (2 )let L* denote the mirror 
image of L , then fL. ( A )  = fL (A-l ) ; (3)  fL(t-I/4) is the Jones polynomial. 
For more details see [17]. 

For unoriented K1,K-1 , U ,and L o ,  we have 

(*) ( K ~ )= A ( L ~ )+A- ' (u ) ,  ( K - ~ )= A - ' ( L ~ )+A(u) .  

Now consider the oriented K1, K-1 , L o ,and U (the first three have consistent 
orientations and the orientation of U is arbitrarily given). Let w ( L O )= n . 
Then w ( U )  = n since lk(Lo)= 0 . Also w ( K 1 )= n + 1 and w (K-1) = 
n - 1 .  Hence fLo(A)= ( - A ) - 3 n ( ~ o ) ,fu(A) = (-A)-3n(U) = 1 ,  f K I ( A )= 
( - A ) - 3 ( n + 1 ) ( ~ l ) ,and fK-, ( A )= ( -A)-3(n-1)(K-1) .Substituting them into (*) 
above, we have 

(**) - A ~fKl( A )= fb ( A )+A-2 ,  - A - ~fK-l ( A )= fLo( A )+ A2. 

Eliminating fLo,we get A2fKI( A )-A-2 fK-l( A )= A2 -A-2 . Hence we have 
either 

(i) fK1= fK-I = 1 if K1 is ambient isotopic to K-1 ;or 
(ii) A2fKI( A )-AV2fKI( A p 1 )= A2 -A-2 if K1 is the mirror image of K-1 . 

But the oriented Kauffman brackets of right-hand and left-hand ( 3 ,  5) torus 
knots are f ( A )= A-l6 + A-24 - A-40 and f  (A- l )  neither of which fit (i) or 
(ii). 

For an amphicheiral knot K in S 3 ,  S 3 ( K ,m l l )  = S 3 ( ~ ,- m / l )  . Hence 
we have 

Corollary 3.19. Amphicheiral strongly invertible knots have property I. 

Bleiler and Scharlemann have shown property P for strongly invertible knots 
[5].Hence amphicheiral strongly invertible knots have property PI. 

Example 3.20. The knot 63 is an amphicheiral strongly invertible knot and 
hence has property I. 



654 XINGRU ZHANG 

Proposition 3.21. Let K be a pretzel knot of type (p ,q , r )  such that r is an 
even number, p + q # 0, p , q are not relative prime. Then K has property I. 
Proof. Since these pretzel knots are strongly invertible, we only need worry 
about f1 surgeries by Proposition 3.17 and Lemma 3.2. A method used by 
Simon [29] in proving property P for these knots can be easily generalized to 
work for property I and we omit the details here. 

Example 3.22. The knot 85 is a pretzel knot of type (3,  3 ,  2) and thus has 
property PI by Proposition 3.21. 

Note that Ortmeyer showed in [25] that R3 is the universal cover of each 
manifold obtained by nontrivial surgery on pretzel knot of type (4 + 2p, 3 + 
29, -5 - 2r) with p ,q , r positive. Hence this family of pretzel knots have 
property PI. 

Computing A(K) = 1/2Ai(1) for the classical knots up to nine crossings, 
we obtain the following table of their Casson invariants (we use the knot table 
given in [27]). 

- This calculation gives immediately that 59 out of the 84 knots have property 
I (A(K) # f1) .  But these 59 knots are strongly invertible [13], hence they 
have property I. Property I for the knots 41, 63, 85, 8i8 has been shown in 
this section. Except for 817,932,and 933,the rest of the knots are strongly 
invertible 1131 and one thus could decide property I for these knots, namely, 
consider the double branched cover associated to the 1 or -1 surgery, find the 
branched knot in the base S3 and check if it is a torus knot of type (3,  5) or 
its mirror image. 

All nontrivial knots with nine or fewer crossings have property P since 75 of 
them have A(K) # 0 and the rest are strongly invertible. 

From the discussion in $3, we see that to solve property I for periodic knots, 
it is equivalent to solve the following 

Question 4.1. Let K be a periodic knot with period 2 or 3 or 5 and with a 
trivial factor knot p ( K )  . When can the branched set (which is a trivial knot), 
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in S3downstairs of the covering p : S3+S3/{f ) become a torus knot of type 
( f 3 ,  5) or ( f 2 ,  5) or ( f 2 ,  3) after performing f 1 / 2  or f 1 / 3  or f 1 / 5  
surgery on p (K) in S3? 

Also from $3 w see that to solve property I for strongly invertible knots in 
S 3 ,  it is enough to solve the following 

Question 4.2. When can a trivial knot be changed into a torus knot of type 
(3,  5) or (-3, 5) after attached a band with a half twist? 

Let K be a knot in S3 and let E = S3- int N(K) be its knot complement. 
Suppose F is a closed connected nonperipheral incompressible surface in E . 
Note that F is necessarily orientable and it separates E into two components, 
say El  and E 2 ,  that is, E = El U E 2 ,  El nE2 = aE1n aE2 = F . Assume 
that E2 is the component which contains d E  . The surface F is called an m-
surface if there is an annulus A properly embedded in E2 with aA consisting 
of a 1-sphere in F and a meridian curve in d E .  F is called an 2m-surface 
if there are two disjoint annuli A1 and A2 properly embedded in E2 with 
aAl = sl U ml and dA2 = s 2  U m2 such that sl and s2 are nonisotopic simple 
closed curves in F and that ml and m2 are meridian curves in d E  . In [21] 
Menasco proved that if K is a knot with a 2m-surface F , then F remains 
incompressible in each manifold S 3 ( ~ ,  mil) obtained by a nontrivial surgery 
on K . Hence knots with 2m-surfaces have property PI by Dehn's lemma. In 
[24] Oertel showed that a Montesinos knot of type (pl /ql , ... ,pn/qn) with 
n 1 4 ,  qi 2 3 ,  i = 1, . . . , n , is a knot with 2m-surface. Therefore this family 
of Montesinos knots have property PI. 

Question 4.3. Let K c S3 be a knot with an m-surface F . Is it true that F 
remains incompressible in each manifold S3(K,  mil) with m/l # 1/0 ? 

In [30] Takahashi proved that no nontrivial surgery on a nontorus 2-bridge 
knot K can produce a manifold with cyclic fundamental group. His idea is to 
show that corresponding to a nontrivial surgery on K there is a homomorphism 
from the fundamental group of the resulting manifold to the group GL(2, C) 
with noncyclic image. 

Question 4.4. For 1 or -1 surgery on a nontorus 2-bridge knot, is there a 
homomorphism from the fundamental group of the resulting manifold to the 
group GL(2, C)  with infinite image? 

Of course the positive answer implies property I for nontorus 2-bridge knots 
(note that 2-bridge knots are strongly invertible). 

If there are no fake Poincare homology 3-spheres, then property I is identical 
with property ? and things become much simpler by Lemma 3.2. For fake 
Poincare homology 3-spheres there is also a control on surgery slopes. Recently 
Bleiler and Hodgson have shown [4] that if a hyperbolic knot in S3 admits 
two finite surgeries then the distance between the two slopes is less than 21. 
Hence if 111 surgery on a hyperbolic knot produces a fake Poincare homology 
3-sphere, then 11 I < 2 1 . To further eliminate the possibilities of obtaining fake 
Poincare homology 3-sphere by surgery on a knot in S 3 ,  one approach one 
could consider is suggested by the following two questions. 
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Question 4.5. If S3(K,  111) is a fake Poincare homology 3-sphere, is it homo- 
topy equivalent to the honest Poincare homology 3-sphere? 

Question 4.6. Is the Casson invariant a homotopy type invariant? 
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